Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Aquabis(2,4-dichloro-6-formylphenolato- $\kappa^2 O, O')(N, N'$ -dimethylformamide- κO)manganese(II)

Guang-Zhao Li, Shu-Hua Zhang,* Zheng Liu* and Li-Xia lin

Key Laboratory of Nonferrous Metal Materials and Processing Technology, Department of Materials and Chemical Engineering, Guilin University of Technology, Ministry of Education, Guilin 541004, People's Republic of China Correspondence e-mail: zsh720108@21cn.com, lisa4.6@163.com

Received 29 June 2007; accepted 9 July 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.013 Å; R factor = 0.077; wR factor = 0.229; data-to-parameter ratio = 14.0.

In the title compound, $[Mn(C_7H_3Cl_2O_2)_2(C_3H_7NO)(H_2O)]$, the Mn^{II} atom is octahedrally coordinated by four O atoms from two bidentate 2,4-dichloro-6-formylphenolate ligands forming the equatorial plane, and by one O atom from a water molecule and one O atom from N,N-dimethylformamide trans in axial positions. A pseudo-dimer is constructed through O- $H \cdots O, O - H \cdots Cl$ and slipped $\pi - \pi$ stacking (with a centroidto-centroid distance of 3.692 Å and interplanar distance of 3.47 Å, giving an offset angle of 20°) interactions. Short $Cl \cdot \cdot Cl$ interactions may help in stabilizing the packing.

Related literature

For related literature, see: Cohen et al. (1964); Desiraju (1989); Mathews et al. (1991); Willey et al. (1994); Zaman et al. (2004); Zhang et al. (2007); Zordan et al. (2005).

Experimental

Crystal data

[Mn(C₇H₃Cl₂O₂)₂(C₃H₇NO)(H₂O)] $M_r = 526.04$ Monoclinic, $P2_1/c$ a = 10.479 (2) Å b = 8.9988 (18) Å c = 22.561 (5) Å $\beta = 92.51 (3)^{\circ}$

V = 2125.4 (8) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 1.16 \text{ mm}^{-1}$ T = 293 (2) K $0.47 \times 0.34 \times 0.25 \text{ mm}$ $R_{\rm int} = 0.062$

10253 measured reflections

3770 independent reflections

2353 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.612, T_{\max} = 0.761$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.077$	H atoms treated by a mixture of
$wR(F^2) = 0.229$	independent and constrained
S = 1.08	refinement
3770 reflections	$\Delta \rho_{\rm max} = 1.38 \text{ e} \text{ Å}^{-3}$
270 parameters	$\Delta \rho_{\rm min} = -0.42 \text{ e } \text{\AA}^{-3}$
3 restraints	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{l} 06 - H6 \cdots O1^{i} \\ 06 - H6A \cdots O3^{i} \\ 06 - H6 \cdots C11^{i} \\ 06 - H6A \cdots C13^{i} \end{array}$	0.85 (2) 0.85 (6) 0.85 (2) 0.85 (6)	2.19 (6) 2.02 (6) 2.67 (5) 2.73 (6)	2.874 (8) 2.748 (7) 3.426 (7) 3.442 (6)	138 (8) 143 (9) 149 (8) 142 (8)

Symmetry code: (i) -x, -y, -z + 1.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

We acknowledge financial support by the Key Laboratory of Nonferrous Metal Materials and New Processing Technology, Ministry of Education, People's Republic of China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2214).

References

- Bruker (2001). SAINT (Version 6.45) and SMART (Version 5.0). Bruker AXS Inc., Madison, Wisconsin, USA.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Cohen, M. D., Schmidt, G. M. J. & Sonntag, F. I. (1964). J. Chem. Soc. pp. 2000-2013.
- Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Mathews, I. I. & Manohar, H. (1991). Acta Cryst. C47, 1621-1624.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Willey, G. R., Palin, J., Lakin, M. T. & Alcock, N. W. (1994). Transition Met. Chem. 19, 187-190.
- Zaman, B., Udachin, K. A. & Ripmeester, J. A. (2004). Cryst. Growth Des. 4, 585-589.
- Zhang, S.-H., Li, G.-Z., Feng, X.-Z. & Liu, Z. (2007). Acta Cryst. E63, m1319m1320
- Zordan, F., Brammer, L. & Sherwood, P. (2005). J. Am. Chem. Soc. 127, 5979-5989.

Acta Cryst. (2007). E63, m2107 [doi:10.1107/S1600536807033417]

Aquabis(2,4-dichloro-6-formylphenolato- $\kappa^2 O, O'$)(N,N'-dimethylformamide- κO)manganese(II)

G.-Z. Li, S.-H. Zhang, Z. Liu and L.-X. Jin

Comment

Interest in packing arrangements of halogenated compounds goes back many years to what Schmidt called the 'chloro effect', where the presence of chloro substituents on aromatic compounds frequently results in stacking arrangements with a short (*ca* 4 Å) crystallographic axis (Cohen *et al.*, 1964; Zordan *et al.*, 2005; Desiraju, 1989; Zaman *et al.*, 2004; Zhang *et al.*, 2007). The title compound, (I), contains the dichloride ligand 3,5-Dichloro-2-hydroxy-benzaldehyde, with two Cl atoms accessible at the periphery of each ligand.

In compound (I), the Mn^{II} atom is octahedrally coordinated by four O atoms from two bidentate 3,5-Dichloro-2-hydroxybenzaldehyde ligands forming the equatorial plane, one O atom from H₂O and one O atom from *N*,*N*-Dimethyl-formamide *trans* on axial positions, forming a slightly distorted octahedral geometry (Fig. 1). The O—H…O hydrogen bonds result in the formation of pseudo dimers through inversion centres (Fig. 2). Within the dimer, there are slippest π - π stacking between the C1—C6 and C8—C13 rings with centroid-to-centroid distance of 3.692 and interplanar distance of 3.47 giving an offset angle of 20°. Some O—H…Cl interactions are also present in these dimers (Table 1). The shortest Cl–Cl contacts, 3.573 (8) Å, (Mathews & Manohar, 1991; Willey *et al.*, 1994) observed between Cl2 and Cl3ⁱ [symmetry codes: (i) *x*, 1/2 + *y*, -1/2 + *z*] might help in stabilizing the crystal packing.

Experimental

A ethanol solution (30 ml) containing 3,5-Dichloro-2-hydroxy-benzaldehyde (0.382 g, 2 mmol) was dropwise added to an aqueous solution containing amino-methanesulfonic acid(0.222 g, 2 mmol) and sodium hydroxide (0.080 g, 2 mmol) with stirred during 10 min. After stirring for 1 h, an aqueous solution of manganese chloride (0.396 g, 2 mmol) was added to the resulting solution and stirred for 2 h. The yellow-green solid compound was separated out and dissolved by *N*,*N*-Dimethyl-formamide, then the yellow-green solution was filtrated. After 15 days, colorless crystals were produced from the filtrate (yield: 48.6%, based on Mn).

Figures

Fig. 1. Molecular view of (I) with the atom labelling scheme. Ellipsoids are drawn at the 30% probability level. H atoms are represented as small sphere of arbitrary radii.

Fig. 2. View of the pseudo dimer formed by O–H···O and O–H···Cl hydrogen bonding interaction. H atoms not involved in H bonds have been omitted for clarity. [Symmetry code: (i) -x, -y, 1 - z].

$A quabis (2,4-dichloro-6-formylphenolato-\kappa^2 O, O') (N, N'-dimethylformamide-\ \kappa O) manganese (II)$

Crystal data

[Mn(C ₇ H ₃ Cl ₂ O ₂) ₂ (C ₃ H ₇ NO)(H ₂ O)]	$F_{000} = 1060$
$M_r = 526.04$	$D_{\rm x} = 1.644 { m Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 264 reflections
<i>a</i> = 10.479 (2) Å	$\theta = 1.8 - 25.1^{\circ}$
b = 8.9988 (18) Å	$\mu = 1.16 \text{ mm}^{-1}$
c = 22.561 (5) Å	T = 293 (2) K
$\beta = 92.51 \ (3)^{\circ}$	Block, colorless
V = 2125.4 (8) Å ³	$0.47 \times 0.34 \times 0.25 \text{ mm}$
7 = 4	

Data collection

Bruker SMART CCD area-detector diffractometer	3770 independent reflections
Radiation source: fine-focus sealed tube	2353 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.062$
T = 293(2) K	$\theta_{\text{max}} = 25.1^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.8^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -12 \rightarrow 12$
$T_{\min} = 0.612, \ T_{\max} = 0.761$	$k = -10 \rightarrow 10$
10253 measured reflections	$l = -26 \rightarrow 17$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.077$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.229$	$w = 1/[\sigma^2(F_o^2) + (0.0588P)^2 + 19.7821P]$ where $P = (F_o^2 + 2F_c^2)/3$

<i>S</i> = 1.08	$(\Delta/\sigma)_{\rm max} = 0.001$
3770 reflections	$\Delta \rho_{max} = 1.38 \text{ e} \text{ Å}^{-3}$
270 parameters	$\Delta \rho_{min} = -0.42 \text{ e } \text{\AA}^{-3}$
3 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	-0.0004 (7)	0.0754 (9)	0.3582 (4)	0.0342 (19)
C2	-0.1247 (7)	0.1196 (9)	0.3346 (4)	0.0367 (19)
C3	-0.1756 (8)	0.0685 (11)	0.2826 (4)	0.045 (2)
Н3	-0.2553	0.1028	0.2689	0.054*
C4	-0.1109 (8)	-0.0350 (12)	0.2488 (4)	0.049 (2)
C5	0.0103 (9)	-0.0785 (11)	0.2674 (4)	0.052 (2)
H5	0.0562	-0.1437	0.2444	0.062*
C6	0.0644 (7)	-0.0244 (11)	0.3210 (4)	0.039 (2)
C7	0.1920 (9)	-0.0777 (11)	0.3359 (4)	0.049 (2)
H7	0.2285	-0.1370	0.3074	0.058*
C8	0.2317 (8)	0.1811 (10)	0.5888 (4)	0.0371 (19)
C9	0.1969 (8)	0.2856 (10)	0.6319 (4)	0.041 (2)
C10	0.2705 (9)	0.3182 (11)	0.6815 (4)	0.052 (2)
H10	0.2419	0.3870	0.7086	0.063*
C11	0.3880 (9)	0.2491 (13)	0.6916 (4)	0.056 (3)
C12	0.4278 (8)	0.1482 (11)	0.6519 (4)	0.049 (2)
H12	0.5065	0.1021	0.6588	0.058*
C13	0.3533 (7)	0.1108 (10)	0.6003 (4)	0.0366 (19)
C14	0.4044 (7)	0.0009 (10)	0.5623 (4)	0.039 (2)
H14	0.4804	-0.0433	0.5759	0.047*
C15	0.3455 (15)	0.6253 (13)	0.4451 (8)	0.113 (6)
H15A	0.3114	0.6656	0.4083	0.169*
H15B	0.4196	0.6810	0.4581	0.169*
H15C	0.2821	0.6314	0.4744	0.169*
C16	0.4926 (12)	0.4435 (15)	0.4035 (6)	0.085 (4)
H16A	0.5162	0.3412	0.4090	0.127*

H16B	0.5617	0.5061	0.4175	0.127*
H16C	0.4743	0.4623	0.3621	0.127*
C17	0.3068 (9)	0.3661 (12)	0.4519 (4)	0.053 (3)
H17	0.2331	0.3898	0.4713	0.064*
C11	-0.2081 (2)	0.2480 (3)	0.37414 (12)	0.0573 (7)
C12	-0.1816 (3)	-0.1083 (4)	0.18426 (12)	0.0761 (9)
C13	0.0525 (2)	0.3769 (3)	0.61989 (13)	0.0652 (8)
Cl4	0.4803 (3)	0.2921 (5)	0.75486 (14)	0.0919 (12)
Mn1	0.19920 (11)	0.04952 (15)	0.46251 (6)	0.0371 (4)
N1	0.3796 (8)	0.4755 (9)	0.4368 (4)	0.057 (2)
O1	0.0414 (5)	0.1221 (7)	0.4086 (2)	0.0382 (14)
O2	0.2581 (5)	-0.0552 (7)	0.3810 (3)	0.0472 (16)
O3	0.1589 (5)	0.1547 (7)	0.5430 (2)	0.0389 (14)
O4	0.3610 (5)	-0.0425 (7)	0.5142 (3)	0.0417 (14)
O5	0.3276 (6)	0.2326 (7)	0.4424 (3)	0.0521 (17)
O6	0.0987 (5)	-0.1542 (7)	0.4855 (3)	0.0408 (14)
H6	0.095 (8)	-0.165 (11)	0.5228 (7)	0.061*
H6A	0.031 (5)	-0.187 (11)	0.468 (3)	0.061*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.031 (4)	0.035 (5)	0.037 (5)	0.005 (4)	0.004 (3)	0.003 (4)
C2	0.031 (4)	0.031 (5)	0.049 (5)	0.001 (4)	0.007 (4)	0.011 (4)
C3	0.035 (4)	0.049 (6)	0.051 (6)	0.002 (4)	-0.006 (4)	0.013 (5)
C4	0.041 (5)	0.065 (7)	0.040 (5)	-0.005 (5)	0.001 (4)	0.000 (5)
C5	0.052 (5)	0.052 (6)	0.052 (6)	0.004 (5)	0.002 (4)	-0.008 (5)
C6	0.029 (4)	0.054 (6)	0.035 (5)	0.003 (4)	0.005 (3)	-0.001 (4)
C7	0.048 (5)	0.055 (7)	0.044 (5)	0.014 (5)	0.007 (4)	-0.008 (5)
C8	0.035 (4)	0.037 (5)	0.039 (5)	-0.007 (4)	0.006 (4)	0.000 (4)
C9	0.039 (5)	0.032 (5)	0.052 (5)	-0.005 (4)	0.004 (4)	-0.007 (4)
C10	0.056 (6)	0.044 (6)	0.058 (6)	-0.008 (5)	0.009 (5)	-0.012 (5)
C11	0.046 (5)	0.080 (8)	0.041 (5)	-0.025 (5)	0.004 (4)	-0.007 (5)
C12	0.037 (5)	0.057 (7)	0.052 (6)	-0.008 (4)	0.002 (4)	0.002 (5)
C13	0.029 (4)	0.043 (5)	0.038 (5)	-0.004 (4)	0.004 (3)	0.005 (4)
C14	0.025 (4)	0.038 (5)	0.054 (6)	0.004 (4)	0.002 (4)	0.005 (4)
C15	0.113 (12)	0.025 (7)	0.200 (17)	0.012 (7)	0.011 (11)	-0.009 (8)
C16	0.076 (8)	0.066 (9)	0.113 (10)	-0.004 (7)	0.028 (7)	0.010 (7)
C17	0.044 (5)	0.059 (8)	0.057 (6)	0.002 (5)	0.000 (4)	0.001 (5)
Cl1	0.0431 (12)	0.0522 (16)	0.0768 (17)	0.0185 (11)	0.0043 (11)	0.0017 (13)
Cl2	0.0656 (17)	0.103 (3)	0.0579 (17)	-0.0133 (16)	-0.0124 (13)	-0.0144 (16)
C13	0.0547 (15)	0.0574 (17)	0.0835 (19)	0.0128 (13)	0.0027 (13)	-0.0221 (14)
Cl4	0.0704 (19)	0.142 (3)	0.0612 (18)	-0.034 (2)	-0.0145 (14)	-0.0208 (19)
Mn1	0.0270 (6)	0.0398 (8)	0.0445 (8)	0.0008 (6)	0.0025 (5)	-0.0040 (6)
N1	0.052 (5)	0.037 (5)	0.083 (6)	0.001 (4)	0.005 (4)	0.000 (4)
01	0.033 (3)	0.040 (4)	0.042 (3)	0.009 (3)	0.005 (3)	0.000 (3)
02	0.038 (3)	0.054 (4)	0.049 (4)	0.015 (3)	0.001 (3)	-0.009 (3)
03	0.027 (3)	0.044 (4)	0.046 (3)	0.002 (3)	0.000 (2)	-0.008 (3)

O4	0.029 (3)	0.043 (4)	0.054 (4)		0.008 (3)	0.001 (3)	-0.006 (3)
05	0.047 (4)	0.033 (4)	0.077 (5)		-0.008 (3)	0.011 (3)	0.002 (3)
O6	0.025 (3)	0.043 (4)	0.055 (4)		-0.006 (3)	0.005 (3)	-0.005 (3)
Geometric parar	neters (Å, °)						
C1-01		1.271 (9)		С12—Н	12		0.9300
C1—C6		1.423 (11)		C13—C1	14		1.429 (12)
C1—C2		1.443 (11)		C14—O4	4		1.222 (10)
С2—С3		1.348 (12)		С14—Н	14		0.9300
C2—Cl1		1.722 (9)		C15—N	1		1.409 (14)
C3—C4		1.398 (13)		С15—Н	15A		0.9600
С3—Н3		0.9300		С15—Н	15B		0.9600
C4—C5		1.377 (13)		С15—Н	15C		0.9600
C4—Cl2		1.735 (9)		C16—N	1		1.457 (14)
C5—C6		1.399 (12)		С16—Н	16A		0.9600
С5—Н5		0.9300		С16—Н	16B		0.9600
С6—С7		1.446 (12)		С16—Н	16C		0.9600
С7—О2		1.222 (10)		C17—O	5		1.241 (12)
С7—Н7		0.9300		C17—N	1		1.300 (13)
C8—O3		1.279 (9)		С17—Н	17		0.9300
С8—С9		1.411 (12)		Mn1—O	3		2.107 (6)
C8—C13		1.435 (11)		Mn1—O	1		2.114 (5)
C9—C10		1.363 (12)		Mn1—O	4		2.179 (6)
C9—Cl3		1.733 (9)		Mn1—O	2		2.180 (6)
C10-C11		1.390 (14)		Mn1—O	5		2.187 (6)
C10—H10		0.9300		Mn1—O	6		2.188 (6)
C11—C12		1.353 (14)		O6—H6			0.85 (2)
C11—Cl4		1.733 (9)		O6—H6	A		0.85 (6)
C12—C13		1.414 (12)					
O1—C1—C6		125.7 (7)		N1-C1:	5—H15A		109.5
O1—C1—C2		120.6 (7)		N1-C1	5—H15B		109.5
C6—C1—C2		113.7 (7)		H15A—	C15—H15B		109.5
C3—C2—C1		123.0 (8)		N1-C1	5—H15C		109.5
C3—C2—Cl1		119.3 (6)		H15A—	C15—H15C		109.5
C1—C2—Cl1		117.6 (7)		H15B—	C15—H15C		109.5
C2—C3—C4		121.3 (8)		N1-C1	6—H16A		109.5
С2—С3—Н3		119.4		N1-C1	6—H16B		109.5
С4—С3—Н3		119.4		H16A—	C16—H16B		109.5
C5—C4—C3		119.1 (8)		N1-C1	6—H16C		109.5
C5—C4—Cl2		120.1 (8)		H16A—	C16—H16C		109.5
C3—C4—Cl2		120.8 (7)		H16B—	C16—H16C		109.5
C4—C5—C6		119.8 (9)		O5—C17	7—N1		125.4 (10)
C4—C5—H5		120.1		O5—C17	7—H17		117.3
C6—C5—H5		120.1		N1—C17	7—H17		117.3
C5—C6—C1		123.0 (8)		O3—Mn	1—01		100.2 (2)
C5—C6—C7		114.9 (8)		O3—Mn	1—04		83.7 (2)
C1—C6—C7		122.1 (8)		O1—Mn	1—04		175.3 (2)
O2—C7—C6		128.6 (8)		O3—Mn	1—02		175.1 (2)

115.7	O1—Mn1—O2	83.7 (2)
115.7	O4—Mn1—O2	92.6 (2)
121.1 (8)	O3—Mn1—O5	89.3 (2)
123.8 (8)	O1—Mn1—O5	96.9 (2)
115.1 (7)	O4—Mn1—O5	85.7 (2)
123.7 (8)	O2—Mn1—O5	87.2 (3)
119.0 (7)	O3—Mn1—O6	93.2 (2)
117.3 (7)	O1—Mn1—O6	91.3 (2)
120.2 (9)	O4—Mn1—O6	85.8 (2)
119.9	O2—Mn1—O6	89.7 (2)
119.9	O5—Mn1—O6	170.8 (2)
119.2 (9)	C17—N1—C15	122.3 (10)
121.2 (8)	C17—N1—C16	119.0 (9)
119.6 (8)	C15—N1—C16	118.3 (11)
122.0 (9)	C1—O1—Mn1	130.0 (5)
119.0	C7—O2—Mn1	127.0 (6)
119.0	C8—O3—Mn1	130.2 (5)
116.8 (8)	C14—O4—Mn1	127.2 (5)
119.8 (8)	C17—O5—Mn1	125.4 (6)
123.4 (8)	Mn1—O6—H6	112 (6)
128.2 (8)	Mn1—O6—H6A	126 (6)
115.9	H6—O6—H6A	110 (7)
115.9		
	115.7 115.7 $121.1 (8)$ $123.8 (8)$ $115.1 (7)$ $123.7 (8)$ $119.0 (7)$ $117.3 (7)$ $120.2 (9)$ 119.9 119.9 $119.2 (9)$ $121.2 (8)$ $119.6 (8)$ $122.0 (9)$ 119.0 119.0 119.0 119.0 $119.8 (8)$ $123.4 (8)$ $128.2 (8)$ 115.9 115.9	115.7 $O1-Mn1-O2$ 115.7 $O4-Mn1-O2$ 121.1 (8) $O3-Mn1-O5$ 123.8 (8) $O1-Mn1-O5$ 123.8 (8) $O2-Mn1-O5$ 115.1 (7) $O4-Mn1-O5$ 123.7 (8) $O2-Mn1-O5$ 119.0 (7) $O3-Mn1-O6$ 117.3 (7) $O1-Mn1-O6$ 120.2 (9) $O4-Mn1-O6$ 119.9 $O2-Mn1-O6$ 119.9 $O2-Mn1-O6$ 119.2 (9) $C17-N1-C15$ 121.2 (8) $C15-N1-C16$ 119.6 (8) $C15-N1-C16$ 122.0 (9) $C1-O1-Mn1$ 119.0 $C8-O3-Mn1$ 116.8 (8) $C14-O4-Mn1$ 119.8 (8) $C17-O5-Mn1$ 123.4 (8) $Mn1-O6-H6$ 115.9 $H6-O6-H6A$ 115.9 $H6-O6-H6A$

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
О6—Н6…О1 ⁱ	0.85 (2)	2.19 (6)	2.874 (8)	138 (8)
O6—H6A···O3 ⁱ	0.85 (6)	2.02 (6)	2.748 (7)	143 (9)
O6—H6···Cl1 ⁱ	0.85 (2)	2.67 (5)	3.426 (7)	149 (8)
O6—H6A···Cl3 ⁱ	0.85 (6)	2.73 (6)	3.442 (6)	142 (8)
Symmetry codes: (i) $-x$, $-y$, $-z+1$.				

Fig. 1

